任意正交基上的稀疏多项式插值算法-黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女


黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

任意正交基上的稀疏多项式插值算法

2018.05.25

投稿:龚惠英部门:理学院浏览次数:

活动信息

时间: 2018年06月08日 14:00

地点: 校本部G507

报告主题:任意正交基上的稀疏多项式插值算法

报告人: Erich Kaltofen 教授 (美国北卡罗琳娜大学数学系)

报告时间:2018年 6月8日(周五)14:00

报告地点:校本部G507

邀请人:曾振柄

主办部门:理学院数学系

报告摘要:In [Kaltofen and Yang, Proc. ISSAC 2014] we give an algorithm based algebraic error-correcting decoding for multivariate sparse rational function interpolation from evalsuations that can be numerically inaccurate and where several evalsuations can have severe errors (“outliers”). Our 2014 algorithm can interpolate a sparse multivariate rational function from evalsuations where the error rate is 1/q is quite high, say q = 5. For the algorithm with exact arithmetic and exact values at non-erroneous points, one avoids quadratic oversampling by using random evalsuation points. Here we give the full probabilistic analysis for this fact, thus providing the missing proof to Theorem 2.1in Section 2 of our ISSAC 2014 paper. Our argumentation already applies to our original 2007 sparse rational function interpolation algorithm [Kaltofen, Yang and Zhi,Proc. SNC 2007], where we have experimentally observed that for T unknown non-zero coefficients in a sparse candidate ansatz one only needs T+O(1) evalsuations rather than O(T2) (cf. Cand`es and Tao sparse sensing), the latter of which we have proved in 2007. Here we prove that T+O(1) evalsuations at random points indeed suffice.

欢迎教师、学生参加 !

黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女